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EQUATIONS OF ELECTRICAL MACHINES WITH A ROTATING

PERMANENT MAGNET PLAYING THE ROLE OF THE STATOR

AND THEIR NONLOCAL ANALYSIS

UDC 534.01: 534.14N. V. Kondrat’eva, F. F. Rodyukov, and A. I. Shepelyavyi

A complete mathematical model is developed for the motion of a current loop powered from a constant
voltage source and placed in the field of a permanent magnet rotating with a constant angular velocity.
Local analysis of this model shows that it is unstable in the absence of external load, which contradicts
the practice of motor operation. Therefore, the motor rotor model considered is incorrect although it
is frequently used. The detected contradiction is eliminated by introducing an additional loop, which
is orthogonal to the initial one and has the same parameters but is short-circuited. The complete
mathematical model of such a system is unstable in the absence of external load. For the case
of an induction motor, the conditions of dichotomy, global asymptotic stability, and instability are
formulated.

We consider a model of an electrical machine (EM) in which the stator is a rotating permanent magnet and
the rotor is a current loop. The magnetic field of the EM stator is represented by a magnetic induction vector B
of constant modulus, which rotates in a plane perpendicular to the rotation axis of the EM rotor with a constant
angular velocity ω = 314 sec−1, equal to the angular frequency of the circuit voltage (ω = 2πf and f = 50 Hz). We
first consider a rotor model in the form of an electric loop, to which a constant excitation voltage uf > 0 is applied
through the collector.

It should be noted that the condition uf > 0 corresponds to the case of a synchronous motor, and uf = 0
corresponds to the case of an induction motor. This agrees with physical concepts because a synchronous motor is
an induction motor supplemented by an excitation coil. The latter produces an additional generalized force, which
shifts the equilibrium position of the induction motor and allows the synchronous motor to operate in a synchronous
mode under load.

The goal of the present work is to derive a complete system of equations and to analyze its stability.
In formulating the equations of motion of the indicated electromechanical system (Fig. 1), we use the

Lagrange–Maxwell equations. The kinetic energy T and the dissipative function D are given by

T = Tm + Te + Te.m., D = Dm +De,

where Tm is the mechanokinetic energy, Te electrokinetic energy, Te.m. is the electromechanokinetic energy, and
Dm and De are the mechanical and electrical components of the dissipative function, respectively.

Apparently, Maxwell [1] was the first to represent the kinetic energy of an electromechanical system as a sum
of three terms. He called the third term electroponderokinetic energy. To determine this component, which contains
products of mass point velocities and values of electric current, Maxwell performed experiments, which shows that
the contribution of electroponderokinetic energy to the total energy of the system is so inappreciable that it cannot
be detected by measuring instruments. This conclusion was confirmed in the beginning of the XX century using
more perfect measuring equipment. In what follows, we assume that Te.m. = 0.

It is known that in an EM, the total power of aerodynamic losses and bearing friction losses is a few tenths
of percent of the rated power [2, p. 165]. Hence, the value of Dm is negligibly small and we can set Dm = 0. It
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Fig. 1

should be noted that the last assumption is of no significance for further consideration. It is usually assumed that
the bearing friction moment is constant and the moment generated by aerodynamic drag is proportional to the
angular velocity. Therefore, such moments can be treated as components of the external load moment.

The energies Tm and Te and the dissipative function De are written as

Tm = Jγ̇2/2, Te = Lai
2
a/2 + Ψia cos (ωt− γ), De = Rai

2
a/2,

where J is the moment of inertia of the current loop, γ is the angle of rotation of the magnetic axis of the loop
passing through the center of the loop perpendicular to its plane, La is the inductance of the current loop, ia is
the loop current, Ψ = BSw = const is the amplitude of interlinkage of the external magnetic field with the loop,
B = const is the modulus of the external magnetic induction vector, S is the area of the current loop, w is the
number of sections in the loop, and Ra is the loop resistance.

The Lagrange–Maxwell equation for the independent electrical variable ia is written as
d

dt

∂Te

∂ia
+
∂De

∂ia
= uf

or

Lai̇a −Ψ(ω − γ̇) sin (ωt− γ) +Raia = uf , (1)

where uf is the constant excitation voltage applied to the current loop and generalized over the coordinate ia.
The Lagrange–Maxwell equation for the independent geometrical coordinate γ has the form

d

dt

∂Tm

∂γ̇
− ∂Te

∂γ
+Mload = 0

(Mload is the external load moment applied to the current loop) or

Jγ̈ = Ψia sin (ωt− γ)−Mload. (2)

System (1), (2) completely describes the dynamics of the examined electromechanical system.
Let us introduce the load angle

θ = ωt− γ (3)

and the slide s of the current loop relative to the external magnetic field

s = (ω − γ̇)/ω. (4)

From (3) and (4) it follows that θ̇ = ωs.
Instead of the current time t, we introduce the dimensionless synchronous time τ = ωt, which corresponds

to the angle of rotation of the external magnetic field (vector B). Then, Eqs. (1) and (2) become

Laω
dia
dτ
− ωΨ

(
1− dγ

dτ

)
sin θ +Raia = uf ,

dθ

dτ
= s = 1− dγ

dτ
,

ds

dτ
= − 1

ω2J
(Ψia sin θ −Mload). (5)

To study system (5), it is reasonable to write it in dimensionless form by introducing the dimensionless
current īa, the external load moment M̄load, the voltage ūf , and the interlinkage Ψ̄:

ia =
u

ωLa
īa, Mload =

uΨ
ωLa

M̄load, uf =
uRa
ωLa

ūf , Ψ =
u

ω
Ψ̄.

Here u is the basis voltage (for example, the peak value of the circuit voltage).
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Fig. 2

In the dimensionless variables, system (5) takes the following form (the bar above the dimensionless quantities
is dropped, and the point above the variable denotes differentiation with respect to the dimensionless time τ):

i̇a = −αria + bs sin θ + αruf , θ̇ = s, ṡ = −δ(ia sin θ −Mload). (6)

Here αr = Ra/(ωLa), b = Ψ̄, and δ = uΨ/(ω3LaJ).
For the steady-state regime, from (6) we obtain s = 0, θ = θ0, and ia = uf . The equilibrium condition for

the electromagnetic moment and the load moment lead to the following equation for θ0:

uf sin θ0 = Mload. (7)

This implies the existence of two equilibrium positions for Mload < uf .
Let us consider small oscillations of system (6) about the equilibrium position. The corresponding linear

system is written as

˙̃ia = −αrĩa + bs̃ sin θ0,
˙̃
θ = s̃, ˙̃s = −δ(̃ia sin θ0 + uf θ̃ cos θ0), (8)

where the values of θ0 are determined from Eq. (7).
The characteristic equation of system (8) is as follows:

λ3 + αrλ
2 + δ(b sin2 θ0 + uf cos θ0)λ+ δufαr cos θ0 = 0. (9)

The Hurwitz minors for the polynomial in (9) satisfy the conditions

∆1 = αr > 0, ∆2 = δαrb sin2 θ0 > 0, ∆3 = ∆2δufαr cos θ0 > 0.

The second and third minors are equal to zero under no-load conditions, in which Mload = 0. No-load conditions are
natural operation conditions for almost all EM. None of them can operate in an unstable regime. This inconsistency
of theory and practice is due to the choice of a one-winding (loop) model of the EM rotor.

It should be noted that equations equivalent to Eqs. (6) are obtained from Gorev’s equations for a EM
without damper loops [3] if the stator windings in them are considered superconducting and the magnetic field of
the stator is considered steady-state. In [3], as in the case considered, the rotor is simulated by just one loop.
In [4, 5] it is proved that in Gorev’s equations [3, p. 192], the presence of resistances in the stator windings extends
the zone of instability. This model is unstable not only under no-load conditions but also under small loads. The
occurrence of the zone of instability is caused by nonzero resistance of the stator windings (see [5, p. 225]).

As noted above, one loop (winding) cannot simulate the cylindrical nature of the magnetic field in the air
gap of an EM formed by the magnetic leads of the stator and rotor. A circular field can be simulated by at least two
orthogonal loops (winding). To avoid the above discordance between theory and practice, the rotor loop (winding)
should be supplemented by a loop (winding) similar to the one available but orthogonal to it and short-circuited.

We call such loop (winding) a phantom one and show that the indicated discordance disappears in its
presence. For this, we repeat the calculations given above taking into account the phantom loop (Fig. 2).

The expressions for the kinetic energy and the dissipative function are written as

T = Tm + Te, Tm = Jγ̇2/2,

Te = Lr(i2a + i2b)/2 + Ψ[ia cos (ωt− γ)− ib sin (ωt− γ)], De = Rr(i2a + i2b)/2,
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where Lr and Rr are the inductance and resistance of the loops (windings) and ib is the current in the phantom
winding. Accordingly, the Lagrange–Maxwell equations for the independent coordinates take the form

Lri̇a = Ψ(ω − γ̇) sin (ωt− γ)−Rria + uf , Lri̇b = Ψ(ω − γ̇) cos (ωt− γ)−Rrib,
(10)

Jγ̈ = Ψ[ia sin (ωt− γ) + ib cos (ωt− γ)]−Mload.

Similarly, as was done above, we write Eqs. (10) in dimensionless form

i̇a = −αria + bs sin θ + αruf , i̇b = −αrib + bs cos θ,
(11)

θ̇ = s, ṡ = −δ(ia sin θ + ib cos θ −Mload), αr = Rr/(ωLr).

The stability in small of system (11) in the case uf > 0 is studied in the same manner as was done for system (6). In
the steady-state regime, from (11) it follows that s = 0, ia = uf , ib = 0, and uf sin θ0 = Mload. The corresponding
linearized equations are written as

˙̃ia = −αrĩa + bs̃ sin θ0,
˙̃ib = −αrĩb + bs̃ sin θ0,

˙̃
θ = s̃, ˙̃s = −δ(̃ia sin θ0 + ĩb cos θ0 + uf θ̃ cos θ0).

From the characteristic equation of the above linear system

(λ+ αr)(λ3 + αrλ
2 + δ(b+ uf cos θ0)λ+ δufαr cos θ0) = 0

it follows that a necessary and sufficient stability condition in small of the steady-state solutions of the equations
of synchronous motors is the condition cos θ0 > 0, i.e., as in real synchronous motors, a small load cannot cause
instability (only the condition 0 6Mload < uf is necessary).

Thus, we proved the need for introduction of a phantom winding in modeling the rotor of synchronous
machines.

It should be noted that the well-known equations describing the motion of a rotor, as a rule, contain a
synchronizing moment in the form of uf sin θ. To explicitly distinguish this synchronizing moment in system (11),
too, we make the change of variables ia = i′a + uf in (11). Omitting primes, we obtain

i̇a = −αria + bs sin θ, i̇b = −αrib + bs cos θ,

θ̇ = s, ṡ = −δ(ia sin θ + ib cos θ + uf sin θ −Mload).

This transformation implies translation of the force generalized over the coordinate ia to the coordinate s. As a
result, the generalized force acquires the meaning of an additional synchronizing moment on the rotor shaft. In this
case, for no-load operation (Mload = 0) in a steady-state mode, the new value of the current is ia = 0, as is the case
in an induction motor.

We consider the case of an induction motor (uf = 0). Let us reduce system (11) to a more convenient a
form for further analysis. Introducing the variables x and y by the formulas

(−αrx+ 1)b = −ia cos θ + ib sin θ, αrby = ia sin θ + ib cos θ,

we obtain

ẋ = −αx− sy + 1, ẏ = −αy + sx, θ̇ = s, s = −δ(αby −Mload). (12)

For nonlocal analysis of the mathematical model (12), we write it as a third-order system that does not
contain the variable θ:

ẋ = −αx− sy + 1, ẏ = −αy + sx, ṡ = −δ(αby −Mload). (13)

Here x and y are quasicurrents in the stator windings, s is the rotor slide, α = αr is the resistance of the rotor
windings, δ is the electromechanical constant that is inversely proportional to the moment of inertia of the rotor,
and Mload is the dimensionless external load moment on the rotor shaft.

Under the assumptions made, stability analysis of the complete system of equations of an induction motor
can be reduced to stability analysis of the system of third-order equations (13).
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Let us consider the complete mathematical model of an induction motor as a system of sixth-order nonlinear
ordinary differential equations that describes the dynamics of an induction motor in conventional idealized concepts,
which are described in detail in, e.g., [3, pp. 28–36; 5, pp. 142–156; 6]. The main of them are as follows: 1) assumption
of the invariance of an electromagnetic field in any cross section of the idealized physical model of an induction
motor ignoring edge effects (hypothesis of a flat model); 2) assumption on the possibility of describing the interplay
of electromagnetic processes in the windings of the machine stator and rotor using two symmetric, linear electric
circuits.

Let us consider the following system of differential equations:(
Ls

d

dt
+Rs

)
isα + æM

d

dt
(irα cos γ − irβ sin γ) = −um sin (ωt),

(
Ls

d

dt
+Rs

)
isβ + æM

d

dt
(irα sin γ + irβ cos γ) = um cos (ωt),

M
d

dt
(isα cos γ + isβ sin γ) +

(
Lr

d

dt
+Rr

)
irα = 0, (14)

M
d

dt
(−isα sin γ + isβ cos γ) +

(
Lr

d

dt
+Rr

)
irβ = 0,

Jγ̈ = M [(irαi
s
β − irβisα) cos γ − (irαi

s
α + irβi

s
β) sin γ]−Mload.

Here isα, isβ , irα, and irβ are the stator and rotor winding currents, γ is the angle of rotation of the rotor, Rs, Ls,
Rr, and Lr are the resistances and inductances of the corresponding windings, M is the amplitude of the mutual
inductance, J is the moment of inertia of the induction motor rotor, ω = 2πf , f and um are the frequency and
amplitude of the voltage applied to the stator windings, respectively, Mload is the load moment on the induction
motor shaft, t is current time, and æ is a parameter that characterizes the effect of electromagnetic processes in the
rotor on the processes in the stator windings. Equations (14) coincide with Eqs. (8-1c), (8-2d) in [6] with accuracy
up to designations.

For further transformations of Eqs. (14), we need expressions for the interlinkage of the windings. In the
case of a cylindrical rotor EM (for example, in the case of an induction motor), these interlinkages can be obtained
from formulas (3-3a)–(3-3d) in [6] taking into account the expressions for the inductances (3-40)–(3-49) [6]. In the
above designation, they are written as

ψs
α = Lsi

s
α + æM(irα cos γ − irβ sin γ), ψs

β = Lsi
s
β + æM(irα sin γ + irβ cos γ),

(15)
ψr
α = M(isα cos γ + isβ sin γ) + Lri

r
α, ψr

β = M(−isα sin γ + isβ cos γ) + Lri
r
β .

Equations (14) and the expressions for the interlinkages (15) are written in so-called phase coordinates
α, β. They are inconvenient for mathematical analysis but, in our case, can be simplified by Park’s nonholonomic
transformation of coordinates [3]. In the case of an induction motor, this can be done by introducing auxiliary
orthogonal axes u and v, which rotate with an arbitrary angular velocity and make angle γk with the magnetic axis
of the phase α of the induction motor stator. Such transformation is given, for example, in [6]. In the designations
used in the present paper, it takes the form

isu = isα cos γk + isβ sin γk, isv = −isα sin γk + isβ cos γk,

iru = irα cos (γk − γ) + irβ sin (γk − γ), irv = −irα sin (γk − γ) + irβ cos (γk − γ),

ψs
u = ψs

α cos γk + ψs
β sin γk, ψs

v = −ψs
α sin γk + ψs

β cos γk,

ψr
u = ψr

α cos (γk − γ) + ψr
β sin (γk − γ), ψr

v = −ψr
α sin (γk − γ) + ψr

β cos (γk − γ),

uu = um(− sin (ωt) cos γk + cos (ωt) sin γk) = −um sin (ωt− γk),

uv = um(sin (ωt) sin γk + cos (ωt) cos γk) = um cos (ωt− γk).

This transformation implies that the real (phase) variables written in two orthogonal coordinate systems, one of
which is rigidly fastened to the induction motor stator, and the other to its rotor, are converted to the projections
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of these variables (quasivariables) onto the same orthogonal axes u and v. In these coordinates (quasicurrents and
quaisinterlinkages), Eq. (14) and expressions (15) become

Ls(i̇su − γ̇kisv) +Rsi
s
uæM(i̇ru − γ̇kirv) = −um sin (ωt− γk),

Ls(i̇sv + γ̇ki
s
u) +Rsi

s
v + æM(i̇rv + γ̇ki

r
u) = um cos (ωt− γk),

(16)
M [i̇su − (γ̇k − γ̇)isv] +Rri

r
u + Lr[i̇ru − (γ̇k − γ̇)irv] = 0,

M [i̇sv + (γ̇k − γ̇)isu] +Rri
r
v + Lr[i̇rv + (γ̇k − γ̇)iru] = 0,

Jγ̈ = M(irui
s
v − irvisu)−Mload;

ψs
u = Lsi

s
u + æMiru, ψs

v = Lsi
s
v + æMirv, ψr

u = Misu + Lri
r
u, ψr

v = Misv + Lri
r
v. (17)

In Eqs. (16) and formulas (17), we convert to dimensionless variable using the formulas

τ = ωt,
dγ

dτ
= 1− s, ψs =

um
ω
ψ̄s, ψr =

um
ω

Lr

M
ψ̄r, is =

um
ωLs

īs, ir =
um
ω

1
M

ī r,

εs =
Rs

ωLs
, εr =

Rr

ωLr
, δ =

u2
m

ω4JLs
, M̄load =

Mload

ω2Jδ
, µ = 1− M2

LsLr

(µ is the coefficient of electromagnetic scattering in the air gap of the induction motor).
Omitting the bar above dimensionless quantities, we write Eqs. (16) and relation (17) in the form

i̇su − γ̇kisv + εsi
s
u + æ(i̇ru − γ̇kirv) = − sin (τ − γk),

i̇sv + γ̇ki
s
u + εsi

s
v + æ(i̇rv − γ̇kiru) = cos (τ − γk),

(1− µ)[i̇su − (γ̇k − 1 + s)isv] + εri
r
u + i̇ru − (γ̇k − 1 + s)irv = 0, (18)

(1− µ)[i̇sv + (γ̇k − 1 + s)isu] + εri
r
v + i̇rv + (γ̇k − 1 + s)iru = 0,

ṡ = −δ[(iruisv − irvisu)− M̄load];

ψs
u = isu + æiru, ψs

v = isv + æirv, ψr
u = (1− µ)isu + iru, ψs

v = (1− µ)isv + irv, (19)

where ψu = ψu(τ), ψv = ψv(τ), iu = iu(τ), and iv = iv(τ) are the quasiinterlinkages and quasicurrents of the
corresponding windings, s(τ) is the slide (relative difference of the angular velocities of the rotor and the magnetic
field of the stator), τ is the dimensionless time (angle of rotation of the stator magnetic field), εs and εr are the
resistances of the stator and rotor windings, and γk is the angle of rotation of the axes u and v.

In (18), we set γk = τ , i.e., we convert to so-called synchronous coordinate axes x and y (rotating syn-
chronously with the stator magnetic field):

i̇sx − isy + εsi
s
x + æ(i̇rx − iry) = 0, i̇sy + isx + εsi

s
y + æ(i̇ry + irx) = 1,

(1− µ)(i̇sx − sisy) + εri
r
x + i̇rx − siry = 0, (1− µ)(i̇sy + sisx) + εri

r
y + i̇ry + sirx = 0, (20)

ṡ = −δ[(irxisy − iryisx)− M̄load];

ψs
x = isx + æirx, ψs

y = isy + æiry, ψr
x = (1− µ)isx + irx, ψr

y = (1− µ)isy + iry. (21)

To examine Eqs. (20), it is more convenient to convert to the quasicurrents of the stator windings and quasi-
interlinkages of the rotor windings, by eliminating the quasicurrents of the rotor windings using expressions (21):

irx = ψr
x − (1− µ)isx, iry = ψr

y − (1− µ)isy.

As a result, we obtain the equations of an induction motor in so-called hybrid variables, in which the quasicurrents
isx and isy are replaced by the variables x and y given by the formulas

x = µ′isx + æψr
x, y = µ′isy + æψr

y, µ′ = 1− æ(1− µ).
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Then, Eqs. (20) become

ẋ = −α′sx+ y + æα′sψ
r
x, ẏ = −α′sy − x+ æα′sψ

r
y + 1,

ψ̇r
x = −α′rψr

x + sψr
y + α′r(1− µ)x, ψ̇r

y = −α′rψr
y − sψr

x + α′r(1− µ)y, (22)

ṡ = −δ[(ψr
xy − ψr

yx)/µ′ − M̄load],

where α′s = εs/µ
′ and α′r = εr/µ

′.
Using the change of variables

x̄ =
ψr
x + α′sψ

r
y

α′r(1− µ)
, ȳ =

ψr
y − α′sψr

x

α′r(1− µ)
, ψx =

x+ α′sy − 1
α′r(1− µ)

, ψy =
y − α′sx
α′r(1− µ)

,

we reduce system (22) to the more convenient form

ψ̇x = −αsψx + ψy + æαsx, ψ̇y = −αsψy − ψx + æαsy,

ẋ = −αrx+ sy + αr(1− µ)ψx + 1, ẏ = −αry − sx+ αr(1− µ)ψy, (23)

ṡ = δ[αrby + α2
r b(1− µ)(ψxy − ψyx) +Mload].

Here x = x̄, y = ȳ, αs = α′s, αr = α′r, Mload = M̄load, and b = (1− µ)/[µ′(1 + α′2s )].
Along with system (23), we consider the simpler system

ψ̇x = −αsψx + ψy, ψ̇y = −αsψy − ψx; (24)

ẋ = −αrx+ sy + αr(1− µ)ψx + 1, ẏ = −αry − sx+ αr(1− µ)ψy,
(25)

ṡ = δ[αrby + α2
r b(1− µ)(ψxy − ψyx) +Mload].

System (24), (25) is the zero approximation (æ = 0) of system (23) in the small regular parameter æ. The
assumption æ = 0, in essence, implies the absence of the effect of electromagnetic processes in the rotor on the
processes in the stator [see the first two equations in (14)], which is used in modeling the stator by a rotating
constant magnet.

Let us consider a simplified mathematical model that describes the slow (compared with electrical) mechan-
ical motion of the rotor. Apparently, Eqs. (24) for the quasiinterlinkage of the stator windings of an induction
motor are globally stable and have the steady-state solution ψ0

x = 0, ψ0
y = 0. Therefore, following the conven-

tional quasisteady-state approach to studying the complete split equations (24) and (25), one often substitutes the
steady-state solution of system (24) into Eqs. (25).

Thus, for an induction motor, we obtain system (13), in which α = αr.
The smallness of the parameter δ (inversely proportional to the moment of inertia of the rotor) underlies

the above-mentioned engineering approach to simplifying system (13) in studying the oscillations of the induction
motor rotor and its stability. This approach consists of freezing the slow mechanical variable s in the equations for
the rapid electrical variables x and y and using the value of y for steady-state conditions in the last of Eqs. (13):

ṡ = −δ(αbs/(α2 + s2)−Mload). (26)

For the steady-stated regime, from (26) it follows that

Mload = αbs/(α2 + s2). (27)

The parameter Mload is a conventional static mechanical characteristics of an induction motor. From (27) it follows
that the electromagnetic moment reaches the maximum value Mmax

load at s = scr = α. According to the Government
Standard, the parameter s is denoted by scr and is given in the log of each induction motor.

The relation

m = Mload/M
max
load = 2sscr/(s2

cr + s2) = 2/(scr/s+ s/scr),

known in the theory of an induction electric motor is called Kloss’s formula.
In formulating results, a system will be called dichotomic if any of its solutions bounded on the positive

semiaxis tends to a steady-state set, and a system is called globally asymptotically stable if any solution of this
system tends to a certain equilibrium state.
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Fig. 3

Fig. 4

Let us consider Eq. (26).
Theorem 1. Let Mload = const. Then: 1) Eq. (26) is generally stable if Mload = 0; 2) Eq. (26) is dichotomic

if 0 < Mload < b/2; 3) Eq. (26) has a single semistable equilibrium state if Mload = b/2; 4) Eq. (26) does not have
of bounded solutions if Mload > b/2.

Proof. 1. Let Mload = 0. The point s = 0 is a single steady-state point of Eq. (26). The function v = s2/2
has a negative derivative along any trajectory. Therefore, the equation is generally stable.

2. Let 0 < Mload < b/2. The equilibrium states are s = s1 (steady-state) and s = s2 (unsteady). From the
expression vi = (s− si)2 (i = 1, 2) it follows that the interval (−∞, s2) is the region of attraction of the equilibrium
state s = s1 and any trajectory s(t, s0), where s0 > s2, goes to infinity. Figure 3 shows the static mechanical
characteristics of an induction motor (horizontal straight lines are constant load moments). It is evident that two,
one or none points of intersection can exist.

3. Let Mload = b/2. Equation (26) has a single steady-state point s = αr, whose region of attraction is the
interval (−∞, αr). Any trajectory s(t, s0), where s0 > αr goes to infinity (Fig. 3). [Lyapunov’s function v = (s−αr)2

is used.]
4. Let Mload > b/2. Equation (26) has no steady-state points. The derivative of the function v = s2 is

positive along any trajectory.
Theorem 2. Let Mload = k(1 − s), where k = const (k > 0). Then: 1) Eq. (26) is generally stable

if one steady-state point exists; 2) Eq. (26) is dichotomic if two steady-state points exist; 3) Eq. (26) is globally
asymptotically stable if three steady-state points exist (Fig. 4).

The proof of Theorem 2 is similar to the proof of Theorem 1 with the use of Lyapunov’s function of the
same form.

In case 1, the region of attraction of the point s0 is the entire phase axis (−∞,+∞). In case 2, the region of
attraction of the stable equilibrium state s = s1 is the interval (−∞, s2). The equilibrium state s = s2 is semistable.
In case 3, the steady-state points s1 and s3 are stable and have the regions of attraction (−∞, s2) and (s2,+∞),
respectively. The steady-state point s2 is unstable.
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Let us consider system (13). We note that the structure of system (13) is similar to that of the well-
known Lorentz system [7]. This allows us to perform a nonlocal analysis of this system using Lyapunov’s functions
considered in [8] and to obtain the conditions of dichotomy and global asymptotic stability.

The third-order system (13) for the cases of constant external load moment and the load moment dependent
linearly on slide is studied in [9–11]. In [10, 11], it is shown that stability analysis of the fifth-order system (24) (25)
reduces to stability analysis of the third-order system (13), i.e., under the same conditions, the same statements are
valid for system (13) and system (24), (25). For convenience, we give theorems that formulate the indicated results
for systems (13) and (24), (25).

Theorem 3. Let Mload = const. Then, the following statements hold: 1) if 0 < Mload < min{b/2, 2α2/δ},
systems (13) and (24), (25) are dichotomic; 2) if b/2 < Mload < 2α2/δ, all solutions of systems (13) and (24), (34)
are unbounded.

Theorem 4. Let Mload = k̄(1− s), k̄ = const. Then, if 0 < k̄δ 6 3α
√

(α+ k̄δ)(α− 2k̄δ), systems (13) and
(24), (25) are globally asymptotically stable.
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